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Abstract
Exact analytical solutions of the fundamental systems of N quasi-one-
dimensional spin-1/2 fermions with infinite delta repulsion in an arbitrary
confining potential were presented in our previous letter (Guan et al 2009
Phys. Rev. Lett. 102 160402). The solutions are the simultaneous eigenstates
of the Hamiltonian H and the total spin operators S2 and Sz, which fulfil
Girardeau’s hard-core contacting boundary condition and are antisymmetric
under odd permutations among fermions. They are approximate solutions
when the coefficient in the delta repulsion is large but finite, and according
to the Lieb–Mattis theorem, the solution with the lowest S is the ground state
for the system. A detailed mathematical calculation for the exact solutions is
presented. The property of the spin-dependent reduced one-body density is
discussed.

PACS numbers: 02.20.+b, 03.75.Ss, 05.30.Fk

1. Introduction

Recently, one-dimensional (1D) strongly correlated atomic systems have attracted extensive
theoretical and experimental attention due to experimental progress in manipulating cold atoms
in effective 1D waveguides [2, 3]. For effective 1D systems, confinement-induced resonance
[4, 5] allows Feshbach resonance tuning of the effective 1D interactions to the very strongly
interacting regime where correlation effects are greatly enhanced [6–8]. The Tonks–Girardeau
(TG) gas, which is the Bose gas in the strongly interacting limit, has been experimentally
realized [9, 10]. The Fermi gas in the unitary limit (the infinitely interaction limit) can be
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also produced using magnetic field-induced Feshbach resonances [11–13]. More recently, an
interacting 1D Fermi gas in a two-dimensional optical lattice with tunable interaction strengths
by Feshbach resonance has also been experimentally realized by Moritz et al [14], which
offers the opportunity of studying the 1D interacting Fermi gases even in the strong interaction
limit.

Exact solutions and methods capable of dealing with strong correlations have played an
especially important role in understanding the physical properties of the 1D quantum gas in
the strongly interacting limit [15–19]. Despite the elegant method of Bose–Fermi mapping
having existed since 1960, generalization to systems including the spin degree of freedom is a
highly non-trivial problem and was only recently tackled for mixtures of Bose and Fermi gases
and the spinor Bose gas [20, 21]. The indistinguishable spin-1/2 Fermi gas in the TG limit
has been studied in our recent work [1] and the exact analytical constructions of ground state
wavefunctions for fundamental systems of N quasi-one-dimensional spin-1/2 fermions with
infinite delta repulsion in an arbitrary confining potential are given there. The wavefunctions
presented in our previous letter [1] are the simultaneous eigenstates of the Hamiltonian H
and the total spin operators S2 and Sz, which fulfil Girardeau’s hard-core contacting boundary
condition and are antisymmetric under odd permutations among fermions. It is our purpose
in this paper to give some examples of the solutions and the general mathematical calculation
in some detail.

Consider a general system of N indistinguishable spin-1/2 fermions in an elongated
potential trap with ω⊥ � ωx , where ωx and ω⊥ ≡ ωy = ωz are angular frequencies in the
axial and radial directions, respectively. Under the condition ω⊥/ωx � N , Fermi systems are
dynamically described by an effective 1D Hamiltonian:

H =
N∑

i=1

Hi + g1d

∑
i<j

δ(xi − xj ), Hi = − h̄2

2m

∂2

∂x2
i

+ V (xi), (1)

where g1d = −2h̄2/(ma1d) is the effective 1D interaction strength related to the three-
dimensional s-wave scattering length as by a1d = −l⊥(l⊥/as − |ζ(1/2)|/√2) with l⊥ =√

h̄/mω⊥, the characteristic oscillator length in the radial direction [4, 5]. V (xi) is an arbitrary
confining potential, say, V (xi) = mω2

xx
2
i

/
2 for a harmonic potential. Interacting spin-1/2

fermion systems have been intensively studied [22–27]; however, there are few rigorous results
except for the homogenous Yang–Gaudin model [15, 16].

The general contacting boundary condition for a TG Fermi gas in the strongly interacting
limit can be represented as

�(xi = xj ) = 0. (2)

Then, the wave function fulfilling the above boundary condition is composed of the Slater
determinant of N orthonormal orbitals φ1(x), . . . , φN(x),

ψA(x1, . . . , xN) = (N !)−1/2 det[φj (xi)]
j=1,...,N

i=1,...,N , (3)

where φj (xi) is the eigenfunction of the single particle Hamiltonian. Since H is spin
independent, it is commutable with the total spin operator Ŝ = ∑

i Ŝi , where Ŝi is the
spin operator of the ith particle. This implies that the system possesses a global SU(2)

symmetry such that the eigenstates of H are simultaneously eigenstates of Ŝ
2

and Ŝz and only
the eigenstates with the largest eigenvalue Sz = S need to be considered. The remaining
eigenstates can be calculated from them by the lowering operator Ŝ−. In addition, the total
wave function of N indistinguishable fermions has to be antisymmetric under transposition of
any two particles.
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According to (3), the ground state corresponds to the fully filled state with the lowest N
orbitals and excited states are generated by occupying higher orbitals. Similar to the spinor
boson case, the ground state is highly degenerate in the TG limit due to the different spin
configurations. Among the family of degenerate ground states, the ferromagnetic spin state
with Sz = S = N/2 is a product of all spins up which is totally symmetric in its permutations.
The total wave function, antisymmetric under transpositions, takes a factorized form

� = ψA(x1, . . . , xN)χ1(1) · · · χ1(N), (4)

where χ1(i) denotes the up-spin state of the ith particle.
According to the Lieb–Mattis theorem [17], for a finite interaction strength, the energy

of the ground state with a given S is lower than that with a higher S. A simple example [18]
shows that the Lieb–Mattis theorem holds even for a system with a delta repulsion whose
coefficient is large but finite. Obviously, the product of the spatial wave function (3) and
the spinor function with S < N/2 does not fulfil the requirement of antisymmetry for an
indistinguishable Fermi system. In our previous letter [1], we present a wave function ψ

formally written as a product of ψA and ψS , where ψA is given in (3) and ψS is composed of a
linear combination of product of sign functions and spinor functions and is totally symmetric
under permutations among particles,

ψS =
{

N!/(n!m!)∑
α=1

Pα

}{
Q1
(
Y [n,m]

1 Z1
)} =

N!/(n!m!)∑
α=1

{
Y [n,m]

α Qα

}
Zα. (5)

The notation will be explained in the text. For a system with an infinite delta repulsion
in an arbitrary confining potential, these solutions are the simultaneous eigenstates of the
Hamiltonian H and the total spin operators S2 and Sz, which fulfil Girardeau’s hard-core
contacting boundary condition and are antisymmetric under odd permutations among fermions.
They are approximate solutions when the coefficient in the delta repulsion is large but finite,
and according to the Lieb–Mattis theorem, the solution with the lowest S is the ground state
for the system.

In this paper, we will construct the symmetric wave function ψS by group theory in some
detail. The spin part of ψS is calculated by the method of Young operators in section 2. For a
given spin Sz = S = N/2 − m, the spinor functions belong to the irreducible representation
[N−m,m] of the permutation group SN so that the spatial functions of ψS have to belong to the
same representation of SN . The spatial wave functions are constructed by the sign functions
in section 3. ψS is composed of the products of spinor functions and spatial functions through
the Clebsch–Gordan coefficients of SN . Three examples for the combinations by the Clebsch–
Gordan coefficients are given in sections 4–6. Then, the general form (5) of ψS is proved in
section 7. In section 8, the total density function of the ground state is calculated to be equal
to that of the N-fermion ferromagnetic system. Other possible solutions of ψS are discussed
in section 9. A summary is given in section 10.

2. Spinor functions

The tensor space T of rank N with respect to SU(2) can be decomposed into irreducible
subspaces by the standard Young operators Y [N−m,m]

μ (see section 8.1 in [28]):

T =
�⊕

m=0

dm⊕
μ=1

T [N−m,m]
μ , T [N−m,m]

μ = Y [N−m,m]
μ T , (6)

3
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where � = N/2 when N is even and � = (N − 1)/2 when N is odd. Hereafter, we define
n = N − m � m for convenience. dm is the dimension of the representation [n,m] of the
permutation group SN (see (6.22) in [28]):

dm = d[n,m](SN) = N !(n − m + 1)

m!(n + 1)!
. (7)

The irreducible tensor subspace T [n,m]
μ corresponds to the representation [n,m] of SU(2) so

that the total spin is S = N/2 −m = (n−m)/2. The smallest standard Young operator Y [n,m]
1

with the Young pattern [n,m] corresponds to the Young tableau

1 . . . m m + 1 . . . n

n + 1 . . . N
,

(8)

and is defined as (see (6.23) in [28])

Y [n,m]
1 =

⎛
⎝∑

R∈Sn

R

⎞
⎠
⎛
⎝∑

T ∈Sm

T

⎞
⎠
⎧⎨
⎩

m∏
j=1

[E − (j n + j)]

⎫⎬
⎭ , (9)

where E is the identical permutation and (j n + j) is the transposition between j and (n + j).
Hnm ≡ Sn ⊗ Sm is a subgroup of SN , where Sn and Sm are the permutation groups of the first
n objects and the last m objects, respectively. Recall that Hnm is not an invariant subgroup
of SN .

The basis tensor θσ1...σN
, σi = 1 or 2, in T is just the spinor function and is expressed as

the direct product of N two-component spinors χσi
(i):

θσ1...σN
= χσ1(1) . . . χσN

(N), χ1(i) =
(

1
0

)
, χ2(i) =

(
0
1

)
. (10)

The basis tensor Y [n,m]
μ θσ1...σN

in T [n,m]
μ is the linear combination of the spinor functions (10)

which is usually denoted by a tensor Young tableau (see p 358 in [28]). The tensor Young
tableau of Y [n,m]

μ θσ1...σN
in T [n,m]

μ is a tableau with the Young pattern [n,m] where the box

filled with j in the Young tableau Y [n,m]
μ is now filled with σj . The spinor function Y [n,m]

1 Z1

where

Z1 = χ1(1) . . . χ1(n)χ2(n + 1) . . . χ2(N) (11)

is the spinor function in T [n,m]
1 with S = Sz = N/2 −m which is denoted by the tensor Young

tableau with the Young pattern [n,m] where each box in the first line is filled with number 1
and that in the second line is filled with number 2:

1 . . . 1 1 . . . 1

2 . . . 2
.

(12)

The tensor Young tableau (12) in T [n,m]
μ denotes the spinor function Rμ1Y [n,m]

1 Z1 with
S = Sz = N/2 − m, where Rμ1 is the permutation transforming the standard Young tableau
Y [n,m]

1 to the standard Young tableauY [n,m]
μ such thatY [n,m]

μ = Rμ1Y [n,m]
1 R−1

μ1 (see section 6.3 in

[28]). The dm spinor functions Rμ1Y [n,m]
1 Z1 span the representation space of the representation

[n,m] of SN .
Y [n,m]

1 Z
(τ)
1 is the spinor function in T [n,m]

1 with S = N/2−m and Sz = S−τ , 0 � τ � 2S,
where the spinor function Z

(τ)
1 contains N1 = n − τ two-component upspinors χ1(i) and

N2 = m + τ two-component downspinors χ2(i):

Z
(τ)
1 = χ1(1) . . . χ1(n − τ)χ2(n − τ + 1) . . . χ2(N). (13)

4
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Y [n,m]
1 Z

(τ)
1 is denoted by the tensor Young tableau with the Young pattern [n,m] where there

are τ boxes in the first line filled with number 2:

1 . . . 1 1 . . . 1 2 . . . 2

2 . . . 2
.

(14)

The tensor Young tableau (14) in T [n,m]
μ denotes the spinor function Rμ1Y [n,m]

1 Z
(τ)
1 with

S = N/2 − m and Sz = S − τ . The dm spinor functions Rμ1Y [n,m]
1 Z

(τ)
1 also span the

representation space of the representation [n,m] of SN .

Interchanging 1 ↔ 2 for all subscripts σi of χσi
(i) in (13), one obtains Z

(τ)

1 ,

Z
(τ)

1 = χ2(1) . . . χ2(n − τ)χ1(n − τ + 1) . . . χ1(N). (15)

Recall that N − (n − τ) = m + τ = n − (2S − τ). Letting

Z
(2S−τ)
1 = χ1(1) . . . χ1(m + τ)χ2(m + τ + 1) . . . χ2(N), (16)

we obtain from the property of Young operators (see section 6.2.4 and section 8.1.2 of [28])

Y [n,m]
1 Z

(τ)

1 = (−1)mY [n,m]
1 Z

(2S−τ)
1 . (17)

Y [n,m]
1 Z

(2S−τ)
1 is the spinor function in T [n,m]

1 with S = N/2 − m and Sz = −S + τ .

3. Spatial functions

It is convenient to choose the spatial part of the symmetric wave function ψS such that it is
composed of the sign functions

sgnij ≡ sgn(xi − xj ) = xi − xj

|xi − xj | , (18)

which satisfy the Laplace equation[
∂2

∂x2
i

+
∂2

∂x2
j

]
sgn(xi − xj ) = 0. (19)

The mixed terms which come from the affection of the Laplace operator on the wave function
ψ = ψAψS are proportional to the delta functions[

∂2

∂x2
i

+
∂2

∂x2
j

]
ψA sgn(xi − xj ) = sgn(xi − xj )

[
∂2

∂x2
i

+
∂2

∂x2
j

]
ψA

+ 2δ(xi − xj )

[
∂

∂xi

− ∂

∂xj

]
ψA. (20)

Thus, ψ is the eigenstate of the Hamiltonian H when the coefficient g1d of the delta repulsions
is infinite.

In order to construct the symmetric wave function ψS , its spatial part composed of the
sign functions has to belong to the same representation of SN as the spinor part belongs to.
The representation of SN to which the spinor wave function with Sz = S = N/2 − m belongs
is denoted by the Young pattern [n,m].

Define Q1 as

Q1 ≡ Q
1,2,...,n
(n+1),...,N =

n∏
i=1

N∏
j=n+1

sgn(xi − xj ). (21)

5
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Obviously, Q1 is symmetric with respect to the subgroup Sn ⊗ Sm of SN . Y [n,m]
1 Q1 can

be calculated straightforwardly and is evidently non-vanishing. Since a Young operator
is proportional to a primitive idempotent of SN , the basis functions Rμ1Y [n,m]

1 Q1 span the
representation space of [n,m] of SN , where Rμ1 is defined in the previous section (see
section 6.3 in [28]). Thus, the totally symmetric wave function ψS is

ψ
[n,m]
S =

∑
μν

(
Rμ1Y [n,m]

1 Q1
)(

Rν1Y [n,m]
1 Z1

)〈[n,m], μ, [n,m], ν|[N, 0], 1〉, (22)

where a superscript [n,m] in ψS is added for definiteness and 〈[n,m], μ, [n,m], ν|[N, 0], 1〉
are the Clebsch–Gordan coefficients of SN and [N, 0] is the identical representation, which is
one-dimensional. Since there is no simple method to calculate the Clebsch–Gordan coefficients
of SN , we will first calculate the symmetric function ψ

[n,m]
S from (22) by three examples, and

then summarize the general formula for ψ
[n,m]
S .

4. Representation [4, 1]

We discuss the symmetric function ψ
[4,1]
S with N = 5 and S = Sz = 3/2 as the first example.

There are four standard Young tableaux for the Young pattern [4, 1] :

Y [4,1]
1 Y [4,1]

2 Y [4,1]
3 Y [4,1]

4

1 2 3 4

5

1 2 3 5

4

1 2 4 5

3

1 3 4 5

2 (23)

The Young operator Y [4,1]
1 is (see (6.23) in [28])

Y [4,1]
1 = [E + (1 2) + (1 3) + (1 4) + (2 3) + (2 4) + (3 4) + (1 2)(3 4)

+ (1 3)(2 4) + (1 4)(2 3) + (1 2 3) + (3 2 1) + (1 2 4) + (4 2 1)

+ (1 3 4) + (4 3 1) + (2 3 4) + (4 3 2) + (1 2 3 4) + (1 2 4 3)

+ (1 3 2 4) + (1 3 4 2) + (1 4 2 3) + (1 4 3 2)][E − (1 5)]. (24)

The spinor function φ1 with Sz = S = 3/2 in the tensor subspace T [4,1]
1 is denoted by the

tensor Young tableau (12)

φ1 = Y [4,1]
1 Z1 = 24θ11112 − 6 {θ11121 + θ11211 + θ12111 + θ21111} , (25)

where Z1 = θ11112. φμ = Rμ1φ1 is the basis tensor in the tensor subspace T [4,1]
μ , denoted by

the same tensor Young tableau (12). The spinor functions φμ span the representation space of
[4, 1] of S5. From (23), we have R11 = E, R21 = (5 4), R31 = (3 4 5) and R41 = (2 3 4 5).

The spatial wave function ψ1 = Y [4,1]
1 Q1, where Q1 = Q

1,2,3,4
5 , is

ψ1 = Y [4,1]
1 Q1 = 24Q

1,2,3,4
5 − 6

(
Q

1,2,3,5
4 + Q

1,2,4,5
3 + Q

1,3,4,5
2 + Q

2,3,4,5
1

)
= 6[4E − (4 5) − (3 5) − (2 5) − (1 5)]Q1,2,3,4

5 . (26)

ψμ = Rμ1ψ1 span the representation space of [4, 1] of S5.

6
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In the orthogonal bases which correspond to the real orthogonal representation D
[λ]

(R)

of SN , the Clebsch–Gordan coefficients of SN for the reduction of [λ] × [λ] to the identical
representation [N ] are always proportional to the Kronecker delta function, because in any
permutation R,∑

ρ

|ρ〉|ρ〉 R−→
∑
ρτω

|τ 〉|ω〉D[λ]
τρ (R)D

[λ]
ωρ(R) =

∑
τ

|τ 〉|τ 〉

since the representation matrices in the orthogonal bases and in the standard bases, which
are calculated by the method of Young operators, are related by a similarity transformation
X[λ] (see section 6.4 in [28]). The Clebsch–Gordan coefficients in the standard bases can be
calculated from those in the orthogonal bases through X[λ]:

〈[λ], μ, [λ], ν|[N ], 1〉 ∝
∑

ρ

(X[λ])μρ(X[λ])νρ. (27)

In terms of the method given in problem 22 of chapter 6 in [29], we have

X[4,1] = 1√
15

⎛
⎜⎜⎜⎝

√
15 1

√
2

√
6

0 4
√

2
√

6

0 0 3
√

2
√

6
0 0 0 2

√
6

⎞
⎟⎟⎟⎠ . (28)

Then, neglecting the normalization factor, we have

〈[4, 1], μ, [4, 1], μ|[N ], 1〉 = 2, 〈[4, 1], μ, [4, 1], ν|[N ], 1〉 = 1, when μ = ν.

(29)

This result holds for all representations [N − 1, 1]. From (29), we obtain the symmetric wave
function ψ

[4,1]
S for N = 5 and Sz = S = 3/2:

ψ
[4,1]
S =

⎛
⎝ 4∑

μ=1

ψμ

⎞
⎠
(

4∑
ν=1

φν

)
+

4∑
μ=1

ψμφμ.

Due to the fundamental property of the Young operators (see (6.30) in [28])

(1 2)Y [4,1]
1 = (1 2 3 4)Y [4,1]

1 = Y [4,1]
1 ,

5∑
μ=1

[(5 μ)]Y [4,1]
1 = 0,

we obtain the expression of ψ
[4,1]
S by collecting terms with the same Q

a1,a2,a3,a4
b1

,

ψ
[4,1]
S =

5∑
μ=1

[(5 μ)ψ1] [(5 μ)φ1]

= 6
5∑

μ=1

[
(5 μ)Q

1,2,3,4
5

]⎡⎣4(5 μ) −
∑
ν =μ

(5 ν)

⎤
⎦φ1

= 30
5∑

μ=1

(5 μ)
[
Q1
(
Y [4,1]

1 Z1
)]

. (30)

7
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5. Representation [3, 2]

We discuss the symmetric function ψ
[3,2]
S with N = 5 and S = Sz = 1/2 as the second

example. There are five standard Young tableaux for the Young pattern [3, 2]:

Y [3,2]
1 Y [3,2]

2 Y [3,2]
3 Y [3,2]

4 Y [3,2]
5

1 2 3

4 5

1 2 4

3 5

1 2 5

3 4

1 3 4

2 5

1 3 5

2 4 (31)

The Young operator Y [3,2]
1 is (see (6.23) in [28])

Y [3,2]
1 = [E + (1 2) + (1 3) + (2 3) + (1 2 3) + (3 2 1)][E + (4 5)][E − (1 4)][E − (2 5)]. (32)

The spinor function φ1 with Sz = S = 1/2 in the tensor subspace T [3,2]
1 is denoted by the

tensor Young tableau (12)

φ1 = Y [3,2]
1 Z1 = 12θ11122 − 4 {θ11212 + θ12112 + θ21112 + θ11221 + θ12121 + θ21121}

+ 4 {θ12211 + θ22111 + θ21211}, (33)

where Z1 = θ11122. φμ = Rμ1φ1 is the basis tensor in the tensor subspaces T [3,2]
μ , denoted by

the same tensor Young tableau (12). The spinor functions φμ span the representation space
of [3, 2] of S5. From (31), we have R11 = E, R21 = (3 4), R31 = (3 5 4), R41 = (2 3 4) and
R51 = (2 3 5 4).

The spatial wave function ψ1 = Y [3,2]
1 Q1, where Q1 = Q

1,2,3
4,5 , is

ψ1 = Y [3,2]
1 Q1 = 12Q

1,2,3
4,5 − 4

(
Q

1,2,4
3,5 + Q

1,3,4
2,5 + Q

2,3,4
1,5 + Q

1,2,5
3,4 + Q

1,3,5
2,4 + Q

2,3,5
1,4

)
+ 4
(
Q

1,4,5
2,3 + Q

3,4,5
1,2 + Q

2,4,5
1,3

)
(34)

= 4[3E − (3 4) − (2 4) − (1 4) − (3 5) − (2 5) − (1 5) (35)

+ (2 4)(3 5) + (1 4)(2 5) + (1 4)(3 5)]Q1,2,3
4,5 . (36)

ψμ = Rμ1ψ1 span the representation space of [3, 2] of S5.
The similarity transformation X[3,2] from the representation in the standard bases to that

in the orthogonal bases is given in (6.92) of [28]:

X[3,2] = 1√
8

⎛
⎜⎜⎜⎜⎜⎝

√
8 1

√
3

√
3 3

0 3
√

3
√

3 1
0 0 2

√
3 0 2

0 0 0 2
√

3 2
0 0 0 0 4

⎞
⎟⎟⎟⎟⎟⎠ . (37)

Then, neglecting the normalization factor, we have

ψ
[3,2]
S = ψ1[6φ1 + 3φ2 + 3φ3 + 3φ4 + 3φ5] + ψ2[3φ1 + 4φ2 + 2φ3 + 2φ4 + φ5]

+ ψ3[3φ1 + 2φ2 + 4φ3 + φ4 + 2φ5] + ψ4[3φ1 + 2φ2 + φ3 + 4φ4 + 2φ5]

+ ψ5[3φ1 + φ2 + 2φ3 + 2φ4 + 4φ5]. (38)

Substituting (36) into (38), we obtain the expression of ψ
[3,2]
S by collecting terms with the

same Q
a1,a2,a3
b1,b2

,

ψ
[3,2]
S = 24

{
Q

1,2,3
4,5 φ1 + Q

1,2,4
3,5 φ2 + Q

1,2,5
3,4 φ3 + Q

1,3,4
2,5 φ4 + Q

1,3,5
2,4 φ5

− Q
1,4,5
2,3 [φ1 + φ2 + φ3 + φ4 + φ5] − Q

2,3,4
1,5 [φ1 + φ2 + φ4]

− Q
2,3,5
1,4 [φ1 + φ3 + φ5] + Q

2,4,5
1,3 [φ1 + φ4 + φ5] + Q

3,4,5
1,2 [φ1 + φ2 + φ3]

}
. (39)

8
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Now, in terms of the fundamental property of the Young operators (see section 6.2.4 in
[28])

(1 2)φ1 = (1 3)φ1 = (2 3)φ1 = (4 5)φ1 = φ1,

[E + (1 4) + (2 4) + (3 4)] φ1 = [E + (1 5) + (2 5) + (3 5)] φ1 = 0,

we have

φ2 = (3 4)φ1, φ3 = (3 5)φ1, φ4 = (2 4)φ1, φ5 = (2 5)φ1,

(2 4)(3 5)φ1 = (3 4)(2 5)φ1, (1 4)(3 5)φ1 = (3 4)(1 5)φ1,

(1 4)(2 5)φ1 = (2 4)(1 5)φ1

and

(2 4)(3 5)φ1 = −(2 4) [E + (1 5) + (2 5)] φ1

= −(2 4)φ1 − (2 5)φ1 + (1 5) [E + (1 4) + (3 4)] φ1

= − [(2 4) + (2 5) − (1 4) − (1 5)] φ1 − (3 4) [E + (2 5) + (3 5)] φ1

= − [(2 4) + (2 5) + (3 4) + (3 5) − (1 4) − (1 5)] φ1 − (3 4)(2 5)φ1

= − [E + (2 4) + (2 5) + (3 4) + (3 5)] φ1.

Then,

(2 4)(1 5)φ1 = [E + (3 4) + (3 5)]φ1,

(3 4)(1 5)φ1 = [E + (2 4) + (2 5)]φ1.

Substituting them into (39), we obtain

ψ
[3,2]
S = 24[E + (3 4) + (3 5) + (2 4) + (2 5) + (2 4)(3 5)

+ (1 4) + (1 5) + (1 4)(3 5) + (1 4)(2 5)]Q1
(
Y [3,2]

1 Z1
)
. (40)

6. Representation [2, 2]

We discuss the symmetric function ψ
[2,2]
S with N = 4 and S = Sz = 0 as the third example.

There are two standard Young tableaux for the Young pattern [2, 2]:

Y [2,2]
1 Y [2,2]

2

1 2

3 4

1 3

2 4 (41)

The Young operator Y [2,2]
1 is (see (6.23) in [28])

Y [2,2]
1 = [E + (1 2)][E + (3 4)][E − (1 3)][E − (2 4)]. (42)

The spinor function φμ with Sz = S = 0 in the tensor subspace T [2,2]
μ (μ = 1 and 2),

respectively, is

φ1 = Y [2,2]
1 Z1 = 4θ1122 − 2 {θ2112 + θ1212 + θ2121 + θ1221} + 4θ2211,

φ2 = (2 3)φ1 = 4θ1212 − 2 {θ2112 + θ1122 + θ2211 + θ1221} + 4θ2121,
(43)

where Z1 = θ1122. Both the spinor functions φ1 and φ2 are denoted by the tensor Young
tableau (12) and they span the two-dimensional representation space of [2, 2] of S4.

The spatial wave functions ψ1 = Y [2,2]
1 Q1 and ψ2 = (2 3)ψ1 are

ψ1 = Y [2,2]
1 Q1 = 8Q

1,2
3,4 − 4Q

1,3
2,4 − 4Q

1,4
2,3,

ψ2 = (2 3)ψ1 = 8Q
1,3
2,4 − 4Q

1,2
3,4 − 4Q

1,4
2,3,

(44)

9
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where Q1 = Q
1,2
3,4 = Q

3,4
1,2. They span the representation space of [2, 2] of S4.

The similarity transformation X[2,2] from the representation in the standard bases to that
in the orthogonal bases is given in problem 24 of chapter 6 in [29]:

X[2,2] = 1√
3

(√
3 1

0 2

)
. (45)

Then, we have

ψ
[2,2]
S = 2

3 [ψ1(2φ1 + φ2) + ψ2(φ1 + 2φ2)]. (46)

Substituting (43) and (44) into (46), we obtain the expression of ψ
[2,2]
S by collecting terms

with the same Q
a1,a2
b1,b2

,

ψ
[2,2]
S = 2

[
Q

1,2
3,4φ1 + Q

1,3
2,4φ2 − Q

1,4
2,3(φ1 + φ2)

]
= [E + (1 3)(2 4) + (1 4) + (2 3) + (1 3) + (2 4)]Q1,2

3,4

(
Y [2,2]

1 Z1
)
, (47)

where the Fock condition (see (6.30) in [28]) is used:

−(1 4)Y [2,2]
1 = −(2 3)Y [2,2]

1 = [E + (2 4)]Y [2,2]
1 ,

−(1 3)Y [2,2]
1 = −(2 4)Y [2,2]

1 = [E + (2 3)]Y [2,2]
1 .

7. Symmetric function

We have calculated the symmetric function ψ
[4,1]
S (30) for N = 5, Sz = S = 3/2, ψ

[3,2]
S (40)

for N = 5 and Sz = S = 1/2, and ψ
[2,2]
S (47) for N = 4 and Sz = S = 0. We now analyze

the common property of the symmetric functions ψ
[n,m]
S , find the general form of ψ

[n,m]
S and

prove it.
Let Bα = {b1, b2, . . . , bm} be a set of m different integers where 1 � b1 < b2 < · · · <

bm � N . The n = N − m remaining different integers a1, a2, · · ·, an, satisfying ai = bj

and 1 � a1 < a2 < . . . < an � N are also determined by the set Bα . There are N !/(n!m!)
different sets Bα . Assume that ai = i and bj = n + j when α = 1. Corresponding to a set
Bα , we define a permutation Pα ,

Pα =
(

1 2 . . . n n + 1 n + 2 . . . N

a1 a2 . . . an b1 b2 . . . bm

)
. (48)

Recall that P1 is the identical permutation. The left coset of Hnm =Sn ⊗ Sm in SN is denoted
by PαHnm.

For a given Young pattern [n,m], define N !/(n!m!) different Young operators Y [n,m]
α

which are generally not standard,

Y [n,m]
α = PαY [n,m]

1 P −1
α . (49)

In fact, Y [n,m]
α corresponds to the Young tableau

a1 . . . am am+1 . . . an

b1 . . . bm
.

Thus,

Zα = PαZ1, PαY [n,m]
1 Z1 = Y [n,m]

α Zα, (50)

10
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Qα = PαQ1 = Q
a1,...,an

b1,...,bm
=

n∏
j=1

m∏
k=1

sgn(xaj
− xbk

). (51)

Then, (30), (40) and (47) can be rewritten in a unified form as given in the following theorem.

Theorem. The totally symmetric wave function constructed by the product of the sign
functionsQα and the basis tensors Zα is uniquely expressed as

ψ
[n,m]
S = C

{
N!/(n!m!)∑

α=1

Pα

}{
Q1
(
Y [n,m]

1 Z1
)} = C

N!/(n!m!)∑
α=1

Qα

(
Y [n,m]

α Zα

)
, (52)

where C is the normalization factor.

Proof. Since Q1 and Y [n,m]
1 Z1 both are invariant in the permutations of the subgroup Sn⊗ Sm,

the action of
∑

α Pα is proportional to that of the sum over all elements in SN{
N!/(n!m!)∑

α=1

Pα

}{
Q1
(
Y [n,m]

1 Z1
)} = 1

n!m!

⎧⎨
⎩
∑
R∈SN

R

⎫⎬
⎭{Q1

(
Y [n,m]

1 Z1
)}

,

so that ψ
[n,m]
S is invariant in SN . Q1 in (21) spans the representation space of the identical

representation [n] × [m] of Sn⊗ Sm so that PαQ1 = Qα spans its induced representation
[n] ⊗ [m] with respect to SN which can be decomposed by the Littlewood–Richardson rule
(see section 6.5 in [28])

[n] ⊗ [m] � [N ] ⊕ [N − 1, 1] ⊕ · · · ⊕ [n,m]. (53)

Since the multiplicity of [n,m] in the reduction (53) is 1, the symmetrized function (52) is
unique if the spatial functions are constructed by the sign functions in the form (51). �

As a by-product, the spatial function corresponding to the identical representation [N ] in
(53) provides an identical equation

N!/(n!m!)∑
α=1

Qα = const. (54)

The constant can be counted in any section, say −∞ < xN < xN−1 < · · · < x1 < ∞. When
n = m is even, Q

a1,...,am

b1,...,bm
= Qb1,...,bm

a1,...,am
, and the identity (54) is simplified by a factor 2. When

n = m is odd, Q
a1,...,am

b1,...,bm
= −Qb1,...,bm

a1,...,am
, and the identity (54) becomes trivial.

Collecting terms with the same Zα in (52), we obtain another form for ψ
[n,m]
S :

ψ
[n,m]
S = C

N!/(n!m!)∑
α=1

(
Y [n,m]

α Qα

)
Zα. (55)

For example, neglecting the normalization factor, we have

ψ
[2,1]
S = (

2Q
1,2
3 − Q

2,3
1 − Q

1,3
2

)
θ112 +

(
2Q

1,3
2 − Q

2,3
1 − Q

1,2
3

)
θ121

+
(
2Q

2,3
1 − Q

1,2
3 − Q

1,3
2

)
θ211,

= (
3Q

1,2
3 − 1

)
θ112 +

(
3Q

1,3
2 − 1

)
θ121 +

(
3Q

2,3
1 − 1

)
θ211,

Q
1,2
3 + Q

1,3
2 + Q

2,3
1 = 1,

ψ
[3,1]
S = Q

1,2,3
4 θ1112 + Q

1,2,4
3 θ1121 + Q

1,3,4
2 θ1211 + Q

2,3,4
1 θ2111,

Q
1,2,3
4 + Q

1,2,4
3 + Q

1,3,4
2 + Q

2,3,4
1 = 0,

11
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ψ
[2,2]
S = (

3Q
1,2
3,4 − 1

)
(θ1122 + θ2211) +

(
3Q

1,3
2,4 − 1

)
(θ1212 + θ2121)

+
(
3Q

1,4
2,3 − 1

)
(θ1221 + θ2112),

Q
1,2
3,4 + Q

1,3
2,4 + Q

1,4
2,3 = 1,

ψ
[4,1]
S = (

5Q
1,2,3,4
5 − 1

)
θ11112 +

(
5Q

1,2,3,5
4 − 1

)
θ11121 +

(
5Q

1,2,4,5
3 − 1

)
θ11211

+
(
5Q

1,3,4,5
2 − 1

)
θ12111 +

(
5Q

2,3,4,5
1 − 1

)
θ21111,

Q
1,2,3,4
5 + Q

1,2,3,5
4 + Q

1,2,4,5
3 + Q

1,3,4,5
2 + Q

2,3,4,5
1 = 1,

ψ
[3,2]
S =

∑
α

Pα

{(
2Q

1,2,3
4,5 + Q

3,4,5
1,2 + Q

2,4,5
1,3 + Q

1,4,5
2,3 − 1

)
θ11122

}
,

Pα =
(

1 2 3 4 5
a1 a2 a3 b1 b2

)
,

4∑
b1=1

5∑
b2=b1+1

Q
a1,a2,a3
b1,b2

= 2.

The symmetric function with S = N/2 − m and Sz = S − τ is

ψ
[n,m],Sz

S = Cτ

{
N!/(n!m!)∑

α=1

Pα

}{
Q1
(
Y [n,m]

1 Z
(τ)
1

)} = Cτ

N!/(n!m!)∑
α=1

Qα

(
Y [n,m]

α Z(τ)
α

)

= Cτ

N!/(n!m!)∑
α=1

(
Y [n,m]

α Qα

)
Z(τ)

α , (56)

where Z
(τ)
1 is given in (13), Z(τ)

α = PαZ
(τ)
1 and the normalization factor Cτ may be different

from C.

8. Density distributions

The spin-dependent reduced one-body density matrices ρ
(S,Sz)
σ (x, x ′) are defined as

ρ(S,Sz)
σ (x, x ′) =

∫ [
ψA(x,X)ψ

[n,m],Sz

S (x,X)
]†

P (1)
σ

[
ψA(x ′, X)ψ

[n,m],Sz

S (x ′, X)
] N∏

i=2

dxi, (57)

where X = (x2, · · · , xN), P (1)
σ = 1/2 − (−1)σ S(1)

z with σ = 1 or 2. ρ
(S,Sz)
σ (x, x ′) evidently

depends on the spin S = N/2 − m and Sz = S − τ . The spin-dependent single particle
densities ρ

(S,Sz)
σ (x) = ρ

(S,Sz)
σ (x, x) are the diagonal elements of the corresponding reduced

density matrices,

ρ(S,Sz)
σ (x) =

∫ [
ψA(x,X)ψ

[n,m],Sz

S (x,X)
]†

P (1)
σ

[
ψA(x,X)ψ

[n,m],Sz

S (x,X)
] N∏

i=2

dxi, (58)

and satisfy the normalized conditions∫
dx ρ(S,Sz)

σ (x) = Nσ , (59)

where N1 = N − m − τ and N2 = N − N1 are the numbers of two-component upspinors
and downspinors, respectively. Interchanging 1 ↔ 2 for all subscripts σi of χσi

(i) in
ψ

[n,m],Sz

S (x,X) and for σ in P (1)
σ , from (58) and (17) one obtains

ρ
(S,Sz)

1 (x) = ρ
(S,−Sz)

2 (x). (60)

The total density is defined as ρ(S)(x) = ρ
(S,Sz)

1 (x) + ρ
(S,Sz)

2 (x), which may depend on the
total spin S but must be independent of Sz owing to the symmetry of SU(2). For N-fermion

12
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ferromagnetic system, S = N/2, the spinor wave function is totally symmetric with respect
to any permutation among fermions such that

ρ(S,Sz)
σ (x) = Nσ

N
ρ(S)(x), when S = N/2. (61)

For S < N/2, ρ
(S,Sz)
σ (x) are generally not proportional to each other. However, when

N1 = N2 = N/2 (Sz = 0), from (60) one has

ρ
(S,0)
1 (x) = ρ

(S,0)
2 (x) = 1

2ρ(S)(x). (62)

We now prove that the total density ρ(S)(x) of the exact solution ψ = ψAψ
[n,m]
S is

independent of the total spin S such that it is equal to the density ρf m(x) = ρ(N/2)(x) of an
N-fermion ferromagnetic system, which is also called the density of a polarized free N-fermion
system,

ρf m(x) = N

∫
ψA(x,X)∗ψA(x,X)

N∏
i=2

dxi =
N−1∑
i=0

|φi(x)|2 , (63)

where φi(x) is explained in equation (3).

Proof. We divide the whole space � into N ! sections �R ,

� =
⋃

R∈SN

�R, �R = R�E,

�E = {−∞ < xN < xN−1 < · · · < x1 < ∞}.
(64)

In each section �R , Qα as well as YαQα is a constant:

YαQα|�R
= ARα. (65)

As proved in the theorem, Y1Q1 is invariant in the subgroup Sn ⊗ Sm, and
∑

α (YαQα)2 is
invariant in the permutation group SN . Namely,

N!/(n!m!)∑
α=1

(YαQα)2 = const (66)

since it is a constant independent of x such that

N!/(n!m!)∑
α=1

(YαQα)2 =
N!/(n!m!)∑

α=1

(ARα)2 = const. (67)

Thus, from (58) one has

ρ(S)(x) =
∫ [

ψA(x,X)ψ
[n,m]
S (x,X)

]†[
ψA(x,X)ψ

[n,m]
S (x ′, X)

] N∏
i=2

dxi

= |C|2
∫ [

N!/(n!m!)∑
α=1

(YαQα)2

]
ψA(x,X)∗ψA(x,X)

N∏
i=2

dxi

= |C|2
[

N!/(n!m!)∑
α=1

(YαQα)2

]
N−1ρf m(x). (68)

13
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The normalized condition for ρ(S)(x) is

N =
∫

ρ(x) dx

= |C|2
∑
R∈SN

[
N!/(n!m!)∑

α=1

(ARα)2

]∫
�R

N−1ρf m(x) dx

= |C|2
N!/(n!m!)∑

α=1

(ARα)2.

Thus, from (67), we come to the conclusion

ρ(x) = ρf m(x). (69)

�

Finally, we would like to discuss the meaning of (62). For an equal-mixing Fermi gas in an
arbitrary confining potential, say a harmonic trap, the density distribution of each component
displays N peaks in the infinitely interacting limit. However, for cases with N1 = N2, no simple
analytical expression can be obtained despite the total density distribution having a simple
expression. As a comparison, we note that for a two-component Bose system with SU(2)
symmetry, the density distribution of each component is proportional to the total density
distribution, i.e. ρi(x) = Ni

N
ρ(x) [20, 30]. The intrinsic difference of the spin-dependent

density distribution between Fermi and Boson systems is attributed to their different exchange
symmetry of the ground state wavefunction. As a limiting case of the strong coupling Fermi
system, our exact result provides a firm ground for various methods, for example, the density
functional theory in combination with the local density approximation which has been widely
applied to the study of the spin-1/2 Fermi gas [23–26].

9. Other solutions for ψS

In section 3, we have assumed that the spatial part of the symmetric wave function ψS is
composed by the sign functions in the form (21). However, the form (21) is not the only one
that can construct the spatial part of ψS by the sign functions. We will discuss the general
form of the symmetric wave function ψS constructed by the product of sign functions and
spinor functions.

The whole space � is divided into N ! sections �R as given in (64). Define the N ! group
functions fR(x):

fR(x)|�S
=
{

1 S = R,

0 S = R,
TfR(x) = fT R(x). (70)

fR spans the representation space of the regular representation of SN . Any product of sign
functions is a linear combination of fR because a sign function is a constant in any section �R .
Conversely, fR can be expressed as a linear combination of the products of sign functions,
including 1 which is the ‘product’ of sign functions of zero power. Let us demonstrate this
conclusion by a simple example. � is divided into six sections �R when N = 3:

�E : −∞ < x3 < x2 < x1 < ∞,

�A: −∞ < x2 < x3 < x1 < ∞,

�B : −∞ < x1 < x2 < x3 < ∞,

�C : −∞ < x3 < x1 < x2 < ∞,

�D: −∞ < x1 < x3 < x2 < ∞,

�F : −∞ < x2 < x1 < x3 < ∞.

14
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Then, we have

fE = 1
4 (sgn12 + sgn23)(sgn13 + 1), fB = 1

4 (sgn12 + sgn23)(sgn13 − 1),

fA = 1
4 (sgn13 − sgn23)(sgn12 + 1), fD = 1

4 (sgn13 − sgn23)(sgn12 − 1),

fC = 1
4 (sgn13 − sgn12)(sgn23 + 1), fF = 1

4 (sgn13 − sgn12)(sgn23 − 1).

Define M(n,m) = N !/(n!m!) functions Fβ(x, n,m) which are invariant with respect to
Hnm =Sn ⊗ Sm,

Fβ(x, n,m) =
∑

R∈HnmPβ

fR(x), β = 1, 2, . . . ,M(n,m),

T Fβ(x, n,m) = Fβ(x, n,m), when T ∈ Hnm, (71)

Fβ(x, n,m)
∣∣
�R

=
{

1 R ∈ HnmPβ,

0 otherwise,

where Pβ is given in (48). There are M(n,m) symmetric functions ψS with S � N/2 − m =
(n − m)/2, which are linearly independent to each other,

M(n,m)∑
α=1

Pα[Fβ(x, n,m)Z1] =
M(n,m)∑

α=1

[PαFβ(x, n,m)]Zα,

PαFβ(x, n,m) =
∑

R∈PαHnmPβ

fR(x),

(72)

where Z1 and Zα are given in (11) and (50), respectively. Among them there are M(n+1,m−1)

functions with S > N/2 − m such that the remaining M(n,m) − M(n + 1,m − 1) functions
with S = N/2 − m. Note that

M(n,m) − M(n + 1,m − 1) = N ! (n + 1 − m)

(n + 1)!m!
= d[n,m](SN).

In other words, there are only d[n,m](SN) symmetric functions ψS with S = Sz = N/2−m

in the following forms which are linearly independent of each other:

M(n,m)∑
α=1

Pα

[
�t(x, n,m)Y [n,m]

1 Z1
]
, 1 � t � d[n,m](SN),

�t(x, n,m) =
M(n,m)∑

β=1

BβtFβ(x, n,m),

(73)

where �1(x, n,m) = Q1 given in the symmetric function (52). Q1 is the only �t(x, n,m) in
(73) whose square is equal to 1 in any section �R:

Q2
1

∣∣
�R

= 1, ∀R. (74)

This may be the reason why our solution (52) is a good approximation of the true wave
function when the interaction strength is very large but not infinite as shown in the numerical
calculations [1].

10. Summary

We have constructed exact solutions of the fundamental system of quasi-1D spin-1/2 fermions
with infinite δ repulsion by means of the group theoretical method in some detail. The exact
solutions are the simultaneous eigenstates of the Hamiltonian H and the total spin operators S2
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and Sz, which fulfil Girardeau’s hard-core contacting boundary condition, are antisymmetric
under odd permutations among fermions and are unique if the additional spatial functions are
constructed by the sign functions in the form (51). Since we have given the general scheme
for the construction of a state with arbitrary S, it is easy to choose the state with lowest S
which is expected to be a good description of the ground state even for a system with large
but not infinite repulsion [1, 31]4. We also prove that the total GS density ρ(x) is equal to
the density of an N-fermion ferromagnetic system. Since the exact construction of the ground
state wave function has been given, it would be interesting to apply the exact wave function
to study the ground state properties and correlation functions in this system directly. This,
however, remains a difficult task for a large system due to the time consumed in calculating
multidimensional integrals and is beyond the scope of the present work.
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Note added in proof. After the paper was completed we read a preprint by C N Yang (2009, arXiv:0906.4593) in
which it is proved (see (9) therein) that the solution (52) is only an approximation of the true wave function when the
interaction strength is very large but not infinite.
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